欢迎光临优站分类目录!
当前位置:优站分类目录 » 站长资讯 » 业界资讯 » 文章详细 订阅RssFeed

该澄清一下了!看看用户对大数据仍存在哪些误区

来源:互联网 浏览:490次 时间:2017-02-12

  导读:大数据作为技术热点和转型升级的支撑工具,不管是个人、企业和政府都很期待。但2016年在解决用户实际问题的过程中,发现用户对大数据的理解上仍存在一些误区,我觉得有必要更清晰地描述出来。

  作者 博晓通创始人&CEO 张宇

  一、大数据的2016

  回顾2016,大数据仍然是国内的舆论焦点,但AI与大数据结合发挥大数据价值成为新热点。我们从Gartner在2015年发布的技术生命周期曲线研究中已经看不见大数据单独出现。机器学习、神经网络作为大数据资源的价值催化剂,成为Gartner技术曲线的新宠儿。2016年的最后几天, Alphago升级版以50战全胜的战绩战震撼了整个围棋界,也刷新了人类对AI(人工智能)的认知。作为一种发展趋势,大数据作为数据基础会融入到更多应用场景中,而大数据和AI技术结合的新应用崭露头角。

  大数据资产和深度学习的结合会创造新亮点。以往我们谈大数据的时候,更多是强调存储和管理数据的能力,局限于对于以往历史数据的统计、汇总,未来考虑到神经网络和大数据结合,我们可以发挥大数据更大的想象空间。吴恩达(AndrewNg)先生在NIPS 2016演讲中指出,神经网络能够扩大到无限大的规模并能够依靠这一点引领深度学习。下一个深度学习的大潮在于更加纯粹的端对端的学习,这需要足够多的数据量,才能通过深度学习自身的体征提取来获得结果。

  而以下2个领域的持续增长,为AI发展会提供越来越丰富的数据量。

  1. 社交大数据继续爆发

  2016年,社交用户和社交数据的暴涨创造新机遇。通过We Are Social发布的“2016年数字报告”显示,全球社交媒体用户23.1亿人,相当于全球人口的31%;与2015年的数据比较,新增社交媒体用户2.19亿人,年增幅10%。

  社交媒体取代传统媒体成为信息流通的主要渠道。因为社交媒体平台用户既是内容的产生者也是传播者,在内容产生、发布和扩散的过程中,这些数据即有可以挖掘知识的丰富内容价值,也有描述个体行为特点的数据价值,可以帮助社交大数据的用户从新角度看待问题。

  2. 电商大数据的新趋势

  2016年最令消费者振奋的节日依然是11.11光棍节,阿里巴巴宣布,2016年天猫双11全球狂欢节总交易额1207亿元。电商取代传统渠道,这种连接全球商家与消费者的商业基础设施的发展趋势明显。围绕电商产生的交易数据和用户评价,不仅描述了资金、信息和物流走向,改变上游的制造、物流与金融配置的效率,而且揭示了用户的消费行为规律,通过实时分析商品相关的数据可以为消费者决策提供参考。

  国外某时尚品牌做了一些新尝试,在线下实体店的衣服架上,商家内嵌了一个液晶屏幕显示该商品在线上收获的点赞数量,为消费者采购决策作参考,利用线上线下的数据打通带来全渠道融合式购物体验,

  在很多新领域,电商数据、社交数据和AI的融合都有了新应用,比如根据不同旅游目的地信息、用户在社交媒体的评价和目的地的最新动态信息,为用户评估旅行社的旅游产品竞争力是否最佳,进而为消费者推荐合适的旅游产品或者帮助用户规划旅游行程。

  总之有规律可循的领域,就可以引入深度学习,以大数据作为基础,提高行业的效率和决策质量。大数据作为技术热点和转型升级的支撑工具,不管是个人、企业和政府都很期待。但2016年在解决用户实际问题的过程中,我发现用户对大数据的理解上存在一些误区,我觉得有必要更清晰地描述出来。

  1.大数据分析是自动化的一键式服务

  在现实生活中,因为大数据不仅是大,还是很多不同类型的数据合集,通过交叉分析才能发现新规律;另外从数据准备、数据收集、数据清洗、数据加工以及数据专题分析和结果可视化,数据解读到决策调整会分出很多层次。因此,目前大数据分析过程少不了人工的参与才能实现其价值。

  2. 某种大数据是企业问题的万能灵药

  现实中,原始数据是混乱和残缺的,不同数据源之间缺乏一致性,大数据分析在一定程度上是脏活、苦活和累活,需要做数据的清洗和加工。没有万能灵药的数据,适合指定应用场景的数据就是好数据。因为隐私保护和政府不公开的限制,实践中可以使用的数据是受到限制的,因此,我们必须为不同应用场景选择合适的数据源和分析模型。

  3. 大数据分析时代,分析师最重要。

  从招聘感受看,数据分析师的薪酬一直在快速上升,数据科学家更是各个企业追求的人才热点。但从我们的实践工作来看,未来大数据分析的能力要开放给基层员工,不能只局限在分析师和领导层使用,实际业务中的人才是决策的主体,在大数据支持下帮助企业提升各个阶层的产出价值是我们的目标。

  4、大数据分析,模型越复杂越好

  最后,固然实现复杂模型(比如LVM潜变量模型)、模型学习算法会非常酷,但我们的工作关注点要放在提高工作效率、增加收益或者减少支出等实际问题的提出和拆解上,尽可能从简单模型先开始实践,并尽可能用自动化的工具来加快探索的速度。比如,目前我们将科学决策之前的数据准备、数据收集、数据清洗、数据加工以及数据专题分析和结果可视化等过程都先实现高度自动化,为用户节省传统分析中90%的时间和精力投入,方便其将工作重心放在决策环节。

  二、我的2016

  (一)博晓通的产品进展和新应用场景

  回顾2016年,我们实现了通过统计监测对象在社交媒体和电商上出现的规律, 分析与其相关的内容,能够让用户掌握实时的网络趋势、热点话题、获知不同领域最有影响力的人群、以及衡量某次事件或活动的曝光频率等能力。这些数据和分析能力可以帮助企业的市场、产品和销售部门来解决具体问题。比如社交营销活动的效果测量,分析消费者的关注点,预测新产品的欢迎程度等。

  博晓通在进军新业务领域的过程中,前期坚持模块化的产品思路,换来厚积薄发的效果,可以最短时间内定制出高可用的新行业数据产品。因此,博晓通不仅可以为合作伙伴提供通用的社交和电商大数据技术支撑,使其方案和能力更完整,而且能快速地为直接客户提供符合细分行业特点的数据产品,比如旅游行业的目的地互联网影响力指数、时尚趋势变化和竞品对比分析等。互联网的公开数据分析已经不再是简单的舆情监测应用,还产生了新应用场景,比如基于海量招聘信息和求职者的公开大数据对失业、就业情况的分析。

  (二)借助资本的力量,促进产业效率的提升

  2016年,“资本寒冬”的声音一直不绝于耳。博晓通在资本寒冬的周期内,完成了一笔千万以上的Pre-A融资。此前我们一直用自有资金在社交和电商大数据领域探索。

  在平台和模式日益成熟的阶段引入资金,可以助力我们扩充技术团队,并提升平台的技术和服务优势,加大平台建设的资源投入,提高产品的性能与数据洞察力;通过补贴早期用户的使用,提前用规模化后的成本向早期用户收取费用,不仅方便培育用户的使用习惯,而且合作伙伴及其用户使用我们的API(应用编程接口)或者产品模块可以更好地挖掘社交和电商数据中的价值,提升了整个产业链上的效率,加速社交和电商大数据应用的普及节奏。

  (三)博晓通的商业模式总结

  互联网产品的商业模式大致有9类或者一个项目具体具有多种模式的特征:代理模式、广告模式、信息中转模式、商户模式、直销模式、会员模式、订阅模式、社区模式和效用模式。

  博晓通的商业模式主要是信息中转模式,以数据的分析结果为商品,消费者付费后或者订阅后获得事前限定的数据、分析工具和分析结果在一定周期内的使用权。

  从长远来看,我们要降低成本,争取经过组织的优质信息彻底流动起来,商业模式也可能发生变化。未来世界的核心竞争力是数据资产,运算能力和算法。但不是所有的企业都能同时满足三者,我们要帮助用户建立这些优势。

  附:2017年,我想实现的小目标

  1、 提升团队的学习能力,领导能力。这个世界的变化速度(科技,经济,文化)越来越快,已经超过了一个正常人可以适应的节奏。在过去技术冲击产业结构是相对缓慢和温和的过程,给人们留下一定的缓冲时间来适应和学习,现在连技术大牛也需要快跑才能跟上。博晓通每个员工在2017年都要加速成长,除了专业知识,行业视野,对应用场景有更多的经验;还要具备真诚、有前瞻性,激发人的核心领导力,通过优秀人才的紧密协作,保证我们在快速前进的过程中不迷失方向。我个人希望读完30本书。读书和游历,是拓展人们见识视野的最重要手段。而读书,因其简捷方便,希望即使作为创业者处在很紧张的工作节奏下,也能坚持下去。

  2、 基于平台的升级为更多的合作伙伴和客户建立数据资产和分析产品,提升行业的效率。包括启动数据共享计划,这是共享经济在大数据资源领域的一次探索,凡是参与数据共享的注册用户,都可以接触并使用传统搜索渠道或者单一平台难以提供的社交和电商数据及分析结果。

  • 网页咨询